
  

AFRL-IF-RS-TR-2002-197 
Final Technical Report 
August 2002 
 
 
 
 
 
 
MAUDE: A WIDE SPECTRUM LANGUAGE 
FOR SECURE ACTIVE NETWORKS 
  
SRI International 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. F321 
  
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 

 



  

 This report has been reviewed by the Air Force Research Laboratory, 
Information Directorate, Public Affairs Office (IFOIPA) and is releasable to the 
National Technical Information Service (NTIS).  At NTIS it will be releasable to 
the general public, including foreign nations. 
 
 
 AFRL-IF-RS-TR-2002-197 has been reviewed and is approved for 
publication. 
 
 
 
 
 
 
 

APPROVED:   
  WILLIAM E. WOLF 
  Project Engineer 
 
 
 
 
 
 

 FOR THE DIRECTOR:    
         WARREN H. DEBANY, Technical Advisor 
          Information Grid Division    
          Information Directorate 
 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 074-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
AUGUST 2002

3. REPORT TYPE AND DATES COVERED 
Final  Aug 97 – Dec 01 

4. TITLE AND SUBTITLE 
MAUDE: A WIDE SPECTRUM FORMAL LANGUAGE FOR SECURE ACTIVE 
NETWORKS 
 

6. AUTHOR(S) 
Jose Meseguer and Carolyn Talcott 
 
  

5.  FUNDING NUMBERS 
C     - F30602-97-C-0312 
PE   - 62301E  
PR   - F321 
TA   -  00 
WU  -  01 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
SRI International 
Computer Science Laboratory 
333 Ravenswood Avenue 
Menlo Park California 94025-3493 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

P01683-010 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
Defense Advanced Research Projects Agency   AFRL/IFGB 
3701 North Fairfax Drive                                     525 Brooks Road 
Arlington Virginia 22203-1714                            Rome New York 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2002-197 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  William E. Wolf/IFGB/(315) 330-2278/ William.Wolf@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
 
Modeling and formally analyzing active network systems and protocols is quite challenging, due to their highly dynamic 
nature and the need, for new network models. In this report, we propose a wide-spectrum methodology using 
executable rewriting logic specifications to address this challenge. We also show how, using the Maude rewriting logic 
language and tools, active network systems, languages, and protocols can be formally specified and analyzed using a 
wide range of formal methods. Benefits include: precise documentation of designs; early discovery of many bugs and 
omissions; and higher assurance of correct behavior. In this paper we illustrate these methods and their practical 
usefulness through two case studies: the AER/NCA protocol suite, and the PLAN active network language. 

15. NUMBER OF PAGES
30

14. SUBJECT TERMS  
Active Networks, Formal Modeling, Executable Specification, Model-Checking, Real-Time, 
Reliable Broadcast, Scalable Reliable Multicast, Active Networks Programming Language 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



 

 

 

i

 

Table of Contents 

 

1  Introduction................................................................................................................................. 1 

1.1 Applying Maude to Active Networks and Communication Protocols ................................. 3 

2  Rewriting Logic and Maude Basics............................................................................................ 4 

3  Specification and Analysis of the AER/NCA Protocol Suite ..................................................... 5 

3.1  Rapid Prototyping and Formal Analysis in Real-Time Maude ........................................... 5 

3.1.1  Rapid Prototyping ......................................................................................................... 5 

3.1.2  Model Checking............................................................................................................ 6 

3.1.3 Application-Specific Analysis Strategies. ..................................................................... 6 

3.2 The AER/NCA Protocol Suite .............................................................................................. 6 

3.2.1 Informal Description of the Protocol ............................................................................. 7 

3.3 Formal Specification of the AERJNCA Protocol Suite in Real-Time Maude...................... 7 

3.3.1 Modeling Communication and the Communication Topology ..................................... 7 

3.3.2 The Class Hierarchy....................................................................................................... 8 

3.3.3 Specifying the Receiver in the Repair Service Protocol................................................ 8 

3.4 Formal Analysis of the AER/NCA Protocol Suite in Real-Time Maude ........................... 10 

3.4.1 Rapid Prototyping. ....................................................................................................... 10 

3.4.2 Formal Analysis ........................................................................................................... 10 

3.5 Experience Gained from the AER/NCA Analysis.............................................................. 12 

4 The Semantics of PLAN in Maude............................................................................................ 12 

4.1 Overview of PLAN in Maude............................................................................................. 14 

4.2 Testing the Maude Specification of PLAN......................................................................... 16 

4.3 Testing and Analyzing Particular PLAN Programs............................................................ 17 

4.4 PLAN in Maude Conclusions ............................................................................................. 19 

5 Conclusions and Future Developments ..................................................................................... 20 

References..................................................................................................................................... 22 

 

List of Figures 

 

Figure 1. The Sender Class Hierarchy ............................................................................................ 8 

Figure 2  A Plan Network ............................................................................................................. 19 



 

 

 

ii

Acknowledgments 
 

This work as been partially supported by DARPA through Air Force Research Laboratory 
Contract F30602-97-C-0312, by NSF under grants CCR-9900326 and CCR-9900334, and by 
Office of Naval Research Control N00012-99-C-0198. 

 

We thank our fellow members in the Maude team, particularly Grit Denker, Francisco Durán, 
Narciso Martí-Oliet, Patrick Lincoln, Steven Eker, and Manuel Clavel for their contributions to 
diffeent aspects of the ideas presented here.  We wish to thank Jon Millen at SRI, José Garcia-
Luna, Jyoti Raju, and Brad Smith at the University of California, Santa Cruz; Steve Zabele and 
Mark Keaton at TASC; and Carl Gunter, Yao Wang, and Pankaj Kakkar at the University of 
Pennsylvania; Ian Mason at the University of New England; and Francesco Bellomi at the 
University of Verona for their important contributions to several of the case studies discussed in 
thispaper.  We have also benefited from discussions on temporal logic matters with Narciso 
Martí-Oliet, Hans dieter Ehrich, José Fiadeiro, Tom Maibaum, and Carlos Duarte and from many 
discussisons with other members of the DARPA Active Networks program, particularly with 
Kirstie Bellman and Chris Landauer.  Last but not least, we thank Doug Maughan for his interest 
in and support of our work and for valuable suggestions concerning case studies of interest. 

 



 

 

 

1

1  Introduction 
“Active networks explore the idea of allowing routing elements to be extensively programmed 
by the packets passing through them. This allows computation previously possible only at end 
points to be carried out within the network itself, thus enabling optimizations and extensions of 
current protocols as well as the development of fundamentally new protocols.” (Taken from the 
Switchware Home Page [16]). Our thesis is that since networks form part of the critical 
infrastructure of distributed systems, the added capability to dynamically program and modify 
the behavior of active networks means that the application of formal modeling and analysis 
techniques to the design and development of new protocols and active packet programs can be 
very helpful. To test this thesis we have carried out a number of case studies using the rewriting 
logic language Maude and associated tools [2]. 

The formal methodology underlying our approach can be summarized by stating that a small 
amount of formal methods can go a long way. Approaches requiring full mathematical 
verification of a system can be too costly. Proof efforts should be used judiciously and 
selectively, carefully choosing those properties for which a very high level of assurance is 
needed. However, there are many important benefits that can be gained from “lighter” uses of 
formal methods, without necessarily requiring a full-blown proof effort. A simple executable 
specification can already be useful for rapid prototyping to find bugs and inconsistencies in the 
design, and as a precise documentation of a system’s design, that can also be used as a clear 
means of communication between development teams. Unfortunately, executability is actually 
not enough. Since a concurrent system can have many different behaviors, to properly analyze 
the system it becomes important to explore not just the single execution provided by some 
default strategy, but many other executions. Under assumptions of finite-state or of termination it 
may even be possible to analyze all executions. Finally, one can move to a two-level 
specification augmenting system-level executable specifications with specifications of high-level 
properties expressed in nonexecutable formalisms such as first-order, higher-order, temporal or 
modal logics to analyze and verify these more complex properties. 

Maude supports this approach very well. The Maude interpreter is very efficient, allowing 
prototyping of quite complex test cases. It also provides a number of debugging aids such as 
tracing (selected) execution steps. The reflective capabilities of rewriting logic and Maude [4] 
low user- defined execution strategies to be formally specified by rewrite rules at the meta-level. 
This allows easy exploration of state spaces of interest, including strategies such as breadth-first 
search that can exhaustively explore all the executions, up to some depth, of a system from a 
given initial state. Maude now provides efficient built-in search and model checking capabilities. 
The search facility can be used to find states matching some pattern reachable from a given 
initial state. The model checker can be used to test an initial state for satisfaction of formulae in 
linear temporal logic. A counterexample is returned if the checker finds that the formula is not 
satisfied. Several additional formal tools that have been built in Maude using the reflective 
capability are available. These include a theorem proving tool, a Church-Rosser checker tool 
with several extensions, and a real-time analysis tool. The inductive theorem prover for 
equational logic specifications [3] can be used to prove inductive properties of functional 
modules in Maude. The Church-Rosser checker tool [3] analyzes equational specifications to 
check whether they satisfy the Church-Rosser property. The tool outputs a collection of proof 
obligations that can either be proved or used to modify the specification. Extensions of this tool 
to perform equational completion and to check termination and coherence of rewrite theories 
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have also been developed [12, 11]. An execution and analysis environment for specifications of 
real-time and hybrid systems called Real-Time Maude [40] has been developed based on a 
notion of real-time rewrite theory that has a straightforward translation into an ordinary rewrite 
theory [41]. This tool translates real-time rewrite theories into Maude modules and can execute, 
analyze, and model check such theories by means of a library of strategies that can be easily 
extended by the user to perform other kinds of formal analysis. 

Maude executables, its manual, most of the above tools, and a collection of examples and papers 
are available on the Web (http://maude.csl.sri.com). 

In summary, using Maude to formally specify and analyze communication systems offers the 
following advantages: 

• Early insertion of the formal method. In this way, maximum benefit can be obtained, 
since the design can be corrected very early, before heavy implementation efforts have 
been spent. 

• Simplicity and intuitive appeal of the formalism. The formalism involved—namely 
rewriting logic [32] —is very simple and it is very well suited for specifying distributed 
systems, in which local concurrent transitions can be specified as rewrite rules. 

• Modeling flexibility. Instead of building in a fixed model of concurrency, rewriting logic 
allows great flexibility to specify many such models [32, 34], including both synchronous 
and asynchronous models of communication and a wide range of concurrent object 
systems. 

• Executability. Rewriting logic specifications are executable in a rewriting logic language 
such as Maude [2]. This means that the formal model of the protocol becomes an 
executable prototype that can be directly used for simulating, testing, and debugging the 
specification. 

• Wide-spectrum. The general idea is to have a series of increasingly stronger methods, to 
which a system specification is subjected. Only after less costly and “lighter” methods 
have been used, leading to a better understanding and to important improvements and 
corrections of the original specification, is it meaningful and worthwhile to invest effort 
on “heavier” and costlier methods. Our approach is based on the following, increasingly 
stronger methods: execution of the specification; symbolic simulation and narrowing 
analysis to explore more possible computations; model checking analysis to exhaustively 
search a finite search space or portions of an infinite one; and formal proof for critical 
properties. 

We have used the Maude environment and its wide-spectrum methodology in a wide variety of 
case studies analyzing active networks protocols, languages, and active packet programs. These 
case studies addressed a number of challenging formalization problems including modeling net 
work resources, network congestion, and real-time properties and composition of protocols. Our 
experience has been very positive, demonstrating that Maude can substantially help in modeling, 
symbolically simulating, and analyzing such subsystems of active networks and other 
communication systems, in documenting and ensuring consistency of important parts of the 
architecture, and in formalizing and analyzing important safety-critical aspects. We were able to 
find important mistakes and omissions in early design stages, and in informal specifications of 
already-deployed systems. 



 

 

 

3

1.1 Applying Maude to Active Networks and Communication Protocols 
In collaboration with other teams working on active networks, on communication and security 
protocols, and on architecture issues, we have applied Maude to formally specify and analyze 
active networks protocols and algorithms, security protocols, composable communication 
services, and distributed software architectures. Below is a brief summary of the results of these 
efforts. The two most recent case studies are discussed in more detail in later sections. 

• A reliable broadcast protocol. In collaboration with the group led by J.J. García-Luna at 
the Computer Communications Research Group at the University of California, Santa 
Cruz (UCSC), executable specifications of the design of a new reliable broadcast 
protocol (RBP) [15] were developed in Maude [5] The process of formally specifying the 
protocol, and of symbolically executing and formally analyzing the resulting 
specification using model checking techniques, revealed deadlocks and inconsistencies 
very early in the design process, before the protocol was implemented. The validation 
and correction cycle led to substantial improvements to the protocol design. Incomplete 
or unspecified assumptions about the behavior of the protocol were clarified, resulting in 
a clear formalization of the basic ideas of the starting informal protocol. 

• Analysis of cryptographic protocols. We have applied Maude to the specification and 
analysis of cryptographic protocols [7] and have shown how our model checking 
techniques can be used to discover attacks. The positive experience modeling and 
analyzing security protocols in Maude [7] has led to the use of Maude by J. Millen and G. 
Denker in the TIPE DARPA project for several purposes. First, the translation from 
CAPSL (Common Authentication Protocol Specification Language) [9] to the CAPSL 
Intermediate Language (CIL) [9] has been carried out in Maude. Second, Maude is used 
as a model checking tool in the integrated protocol environment and toolkit. The CIL 
output of a cryptographic protocol is translated (in Maude) into an executable Maude 
specification. A meta-level search strategy imports the Maude protocol specification and 
provides the user with a predefined breadth-first strategy. 

• Specifying and analyzing a PLAN algorithm. PLAN (Packet Language for Active 
Networks) [19] is a language to program active networks developed at the University of 
Pennsylvania (UPenn). In collaboration with Y. Wang and C. Gunter at UPenn, we have 
used Maude to formally specify and analyze a PLAN active network algorithm in which 
active packets scout the nodes of an active network from a source to a destination to find 
an optimal route relative to a given metric [45].  A Maude strategy was written to explore 
all behaviors from a given initial state and to check their correctness, using the fact that 
the algorithm always terminates. 

• Middleware architecture. In [6] we present an executable specification of a general 
middle- ware architecture for composable distributed communication services such as 
fault tolerance and security that can be composed and can be dynamically added to 
selected subsets of a distributed communications system. 

• Real-time Maude. The Real-Time Maude tool [40, 37] supports the specification and 
analysis of real-time rewrite theories in timed modules and object-oriented timed 
modules [41].  A variety of search and model checking commands for analyzing timed 
modules are provided, including facilities for model checking certain classes of pattern-
based real-time temporal formulas [40]. 
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• Network simulation strategies in Maude. Another application of Maude to the 
specification of real-time distributed systems is the specification of a general network 
model in Maude and primitives for defining simulation strategies [30] The use of the 
model has been illustrated in an ongoing case study based on the IETF PIM-DM 
(Protocol Independent Multi-Cast- Dense Mode) draft, and on a pseudo-code 
specification obtained from Brad Smith at UC Santa Cruz. 

• Specifying the AER/NCA Protocol Suite. In collaboration with Mark Keaton and Steve 
Zabele at TASC, the Real-Time Maude tool has been used for the specification and 
analysis of the Active Error Recovery/Nominee-based Congestion Avoidance 
(AER/NCA) suite of adaptive multicast congestion control, and error recovery active 
network protocols developed at the University of Massachusetts (UMass) and TASC [39, 
37]. AER/NCA posed several challenging new problems, including formal modeling of 
time-sensitive and resource- sensitive behavior and the composability of its components. 
Several subtle errors and omissions in the informal use-case specification were 
uncovered. 

• Formal specification of PLAN in Maude. The PLAN language has a rigorous but informal 
operational specification [26].  In collaboration with Carl Gunter and Pankaj Kakkar at 
UPenn, a Maude specification of a substantial subset of the PLAN language has been 
developed [44] Since the specification is executable, it can be used for testing and 
simulation of PLAN programs. It also eliminates the need for hand translation of PLAN 
programs into Maude in order to analyze them. A polymorphic type inference system for 
PLAN programs has been written in Maude, and a specialization transformation has been 
designed that simplifies simulation, testing, and reasoning about PLAN programs in 
Maude. 

2  Rewriting Logic and Maude Basics 
Rewriting logic [32] is a very simple logic that is well suited as a framework for formal 
specification and analysis of distributed systems. Both the distributed states and the local 
concurrent transitions of such systems can be naturally specified by rewrite theories (∑, E, R) in 
which such local concurrent transitions are described by rewrite rules R. Specifically, the 
distributed state can be axiomatized as an algebraic data type by an equational theory (∑, E), and 
each rewrite rule tt ′→  in R is interpreted as a local transition in the distributed state of the 
system. That is, t and t′  describe patterns for fragments of the distributed state of a system, and 
the rule specifies how a local concurrent transition can take place in such a system, changing the 
local state fragment from the pattern t to the pattern t′ . Rewriting logic then provides a simple 
inference system in which one can derive all the possible finitary concurrent transitions of the 
system so axiomatized. That is, concurrent computations exactly correspond to deductions in the 
logic. 

As a wide-spectrum semantic framework, rewriting logic is well suited to span the gap between 
high-level properties and architectural designs on the one hand, and distributed or mobile system 
implementations on the other. Rewriting logic has been used to give a precise semantics to a 
number of distributed architectural notations and concepts, and to obtain partially- or fully- 
defined formal executable specifications from such notations [35] Using Maude and its 
associated tools [2] such executable specifications can then be analyzed in a variety of ways, 
including symbolic simulation and debugging, and flexible forms of model checking analysis. 
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Furthermore, using model checking analysis and formal proofs, high-level properties of such 
specifications ex pressed in nonexecutable formalisms such as temporal and modal logics can 
likewise be analyzed and verified. Since rewriting logic specifications can under quite reasonable 
assumptions be directly implemented with competitive performance as distributed and mobile 
systems, it is possible to span the gap from high-level designs to distributed implementations 
without leaving the formal framework. 

3  Specification and Analysis of the AER/NCA Protocol Suite 
The Real-Time Maude tool [40] and the Maude formal methodology [8] has been applied to the 
specification and analysis of the AERINCA suite of active network communication protocol 
components [27, 1], which collectively implement a scalable and reliable multicast capability 
using active elements in the network. Being a very advanced and sophisticated suite of protocols 
that run in a highly distributed and modular fashion, the AER/NCA suite poses challenging new 
problems for formal specification and analysis including: 

• Time-sensitive behavior: including delay, delay estimation, timers, ordering, and resource 
contention; 

• Resource-sensitive behavior: capacity, latency, congestion/cross-traffic, and buffering; 

• Critical metrics: performance and correctness; 

• Composability issues: modeling and analyzing both individual protocol components and 
their aggregate behavior, and supporting reuse for developing alternative protocols. 

With invaluable help from Mark Keaton and Steve Zabele at TASC, who provided informal 
specifications and answered all our questions, we formally specified and analyzed the AER/NCA 
in Real-Time Maude, a tool extending Maude to support the area of distributed real-time and 
hybrid systems [40, 37]. 

Real-Time Maude has proved to be well suited to meeting the above challenges. The active 
network and performance aspects have been naturally addressed by the flexibility of Maude’s 
distributed object model [33] that made it easy to include active elements and resources as 
objects. The time- and resource-sensitive behavior is expressed naturally by timed rewrite rules. 
The compos ability issues were well addressed by Maude’s support for multiple class 
inheritance. 

3.1  Rapid Prototyping and Formal Analysis in Real-Time Maude 
The Real-Time Maude specification language and analysis tool [37, 40] is built on top of Maude. 
Real-Time Maude supports the specification of real-time rewrite theories in timed modules and 
object-oriented timed modules, which are transformed into equivalent Maude modules. The Real 
Time Maude tool supports a wide range of techniques for formally analyzing timed modules, as 
we summarize below. 

3.1.1  Rapid Prototyping 
The Real-Time Maude tool transforms timed modules into ordinary Maude modules that can be 
immediately executed using Maude’s default interpreter, which simulates one behavior—up to a 
given number of rewrite steps to perform—from a given initial state. The tool also has a default 
timed execution strategy that controls the execution by taking the elapsed time in the rewrite path 
into account. 
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3.1.2  Model Checking 
Real-Time Maude provides a variety of search and model checking commands for further 
analyzing timed modules by exploring all possible behaviors—up to a given number of rewrite 
steps, duration, or satisfaction of other conditions—that can be nondeterministically reached 
from the initial state. In particular, the tool provides model checking facilities for model 
checking certain classes of real-time temporal formulas [40] In the following, we will treat 
temporal properties of the form p UStable≤rp′, where p and p′ are patterns, and UStable≤r is a 
temporal “until/stable” operator. A pattern is either the constant noTerm (which is not matched 
by any term), the constant anyPattern (which is matched by any term), a term (possibly) 
containing variables, or has the form t( x ) where cond ( x ). The temporal property p UStable≤r p′ 
is satisfied by a real-time rewrite theory with respect to an initial term t0 if and only if for each 
infinite sequence and each nonextensible finite sequence   

Λ→→→ 22110 ,,0, rtrtt  

of one-step sequential ground rewrites [32] in the transformed “clocked” rewrite theory [39] 
there is a k with rrk ≤ such that kt matches p′, and t matches p for all 0 ≤ i < k,  and, furthermore, 
if tj matches p′ then so does tl for each 1 > j with rj ≤ r. That is, each state in a computation 
matches p until p’ is matched for the first time (by a state with total time elapse less than or equal 
to r), and, in addition, p′ is matched by all subsequent states with total time elapse less than or 
equal to r. 

3.1.3 Application-Specific Analysis Strategies. 
A Real-Time Maude specification can be further analyzed by using Maude’s reflective features 
to define application-specific analysis strategies. For that purpose, Real-Time Maude provides a 
library of strategies—including the strategies needed to execute Real-Time Maude’s search and 
model checking commands—specifically designed for analyzing real-time specifications. 

3.2 The AER/NCA Protocol Suite 
The AER/NCA protocol suite [1, 27] is a new and sophisticated protocol suite for reliable 
multicast in active networks. The suite consists of a collection of composable protocol 
components supporting active error recovery (AER) and nominee-based congestion avoidance 
(NCA) features, and makes use of the possibility of having some processing capabilities at 
“active nodes” between the sender and the receivers to achieve scalability and efficiency. 

The goal of reliable multicast is to send a sequence of data packets from a sender to a group of 
receivers. Packets may be lost due to congestion in the network, and it must be ensured that each 
receiver eventually receives each data packet. Existing multicast protocols are either not scalable 
or do not guarantee delivery. To achieve both reliability and scalability, Kasera et al. [27] have 
suggested the use of active services at strategic locations inside the network. These active 
services can execute application-level programs inside routers, or on servers colocated with 
routers along the physical multicast distribution tree. By caching packets, these active services 
can subcast lost packets directly to “their” receivers, thereby localizing error recovery and 
making error recovery more efficient. Such an active service is called a repair server. If a repair 
server does not have the missing packet in its cache, it aggregates all the negative 
acknowledgments (NAKs) it receives, and sends only one request for the lost packet toward the 
sender, solving the problem of feedback implosion at the sender. 
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3.2.1 Informal Description of the Protocol 
The protocol suite consists of the following four composable components: 

• The repair service (RS) component deals with packet losses and tries to ensure that each 
packet is eventually received by each receiver in the multicast group. 

• Rate control (RC): The loss of a substantial number of packets indicates over-congestion 
due to too high a frequency in the sending of packets. The rate control component 
dynamically adjusts the rate by which the sender sends new packets, so that the frequency 
decreases when many packets are lost, and increases when few packet losses are detected. 

• Finding the nominee receiver (NOM): The sender needs feedback about discovered 
packet losses to adjust its sending rate. However, letting all receivers report their loss 
rates would result in too many messages being sent around. The protocol tries to find the 
“worst” receiver, based on the loss rates and the distance to the sender. Then the sender 
takes only the losses reported from this nominee receiver into account when determining 
the sending rate. 

• Finding round trip time values (RTT): To determine the sending rate, the nominee, and 
how frequently to check for missing packets, knowledge about the various round trip 
times (the time it takes for a packet to travel from a given node to another given node, 
and back) in the network is needed. 

These four components are defined separately, each by a set of use cases, in the informal 
specification [1] and are explained in [37, 27]. In our formal specification the rewrite rules 
closely correspond to the use cases. 

3.3 Formal Specification of the AERJNCA Protocol Suite in Real-Time Maude 
The Real-Time Maude specification of the AERINCA protocol suite, summarized here, is de 
scribed in its entirety in [37, 38]. Although the four protocol components are closely interrelated, 
it is nevertheless important to analyze each component separately, as well as in combination. 

3.3.1 Modeling Communication and the Communication Topology 
We abstract away from the passive nodes in the network, and model the multicast 
communication topology by the multicast distribution tree, which has the sender as its root, the 
receivers in the multicast group as its leaf nodes, and the repair servers as its internal nodes. 
Appropriate classes for these objects are defined in their Real-Time Maude specification [37]. 

Packets are sent through links, which model edges in a multicast distribution tree. The time it 
takes for a packet to arrive at a link’s target node depends on the size of the packet, the number 
of packets already in the link, and the speed and propagation delay of the link. All these factors 
affect the degree of congestion and must be modeled to faithfully analyze the AERINCA 
protocol. The class LINK models all these aspects. The attempt to enter a packet p into the link 
from a to b is modeled by the message send (p, a, b). This message is handled by the link 
from a to b by discarding the packet if the link is full, and otherwise by delivering it—after a 
delay corresponding to the transmission delay—by sending the message p from a to b to the 
global configuration, where it should then be handled by object b. 
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3.3.2 The Class Hierarchy 
The Real-Time Maude specification is designed using multiple class inheritance, so that each of 
the four protocol components RTT, NOM, RC, and RS can be executed separately as well as 
together in combination. Figure 1 shows the class hierarchy for sender objects, which allows for 
maximal reuse of transitions that have the same behavior when a component is executed 
separately and when it is executed together with the other components. The class hierarchies for 
repair servers and receivers are entirely similar. 

3.3.3 Specifying the Receiver in the Repair Service Protocol 
To exemplify the Real-Time Maude specification style, we present some parts of the 
specification of the receiver objects in the RS protocol. The receiver receives data packets and  

 

 
Figure 1. The Sender Class Hierarchy 

 

forwards them to the receiver application in increasing order of their sequence numbers. 
Received data packets that cannot be forwarded to the application, because some data packets 
with lower sequence numbers are missing, are stored in the dataBuffer attribute, and the 
smallest sequence number among the nonreceived data packets is stored in the readNext Seq 
attribute. When the receiver detects the loss of a data packet, it waits a small amount of time (in 
case some of its “siblings” or its repair server also have detected the loss) before sending a 
NAK-request for the lost packet to its repair server. The repair server then either subcasts the 
data packet from its cache or forwards the request upstream. The receiver retransmits its request 
for the missing data packet if it does not receive a response to the repair request within a 
reasonable amount of time. We store, for each missing data packet, the information about the 
recovery attempts for the missing data packets in a term 

info(seqNo, supprTimer, retransTimer, NAKcount), 

where seqNo is the sequence number of the data packet, supprTimer is the value of the 
suppression timer for the data packet (this value is either the value noTimeValue when the 
timer is turned off, or the time remaining until the timer expires), retransTimer is the value of the 
retrans mission timer of the data packet, and NAKcount is the NAK count of the data packet, 
denoting how many times a repair for the data packet has been attempted. Elements of a sort 

Sendable 

RTTsender      NOMsender RCsender RSsender 

SenderCombined 

RTTsenderAlone NOMsenderAlone  RCsenderAlone  RSsenderAlone 
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Datalnfo are multisets of info terms, where multiset union is denoted by an associative and 
commutative juxtaposition operator. 

The receiver class RSreceiver in the RS component is declared as shown below. Each of the 
attributes of objects in the class is declared with its type (sort). For example, the attribute 
fastRepairFlag has type Bool. The class RSreceiver is declared as a subclass of Receiver. 

class RSreceiver| 
fastRepairFiag  : Bool,  
readNextSeq : NzNat,   *** first missing data packet 
retransTO : Time,   *** time before resending NAK packet 
dataBuffer : MsgConf,  *** buffered dataPackets 
… 
datalnfo : Datalnfo .   *** store info about repairs 

subclass RSreceiver < Receiver . 
 

As an example of the modeling of the use cases in the informal specification, we show the use 
case and corresponding rule that describes what happens when the suppression timer for a 
missing data packet expires, that is, when the second parameter of an info-term is 0. The use 
case in the informal AER/NCA specification is given as follows: 

B.5  This use case begins when the NAK suppression timer for a missing data packet 
expires. The following processing is performed (seq is the sequence number of 
the missing data packet) : 

if ( (data packet seq is currently buffered) OR (seq < readNextSeq)) 
{ End Use Case } 

if (NAK count for data packet seq > 48) 
{ Error, connection is broken, cannot continue } 

Unicast a NAK packet for data packet seq with the receiver’s NAK 
count and fastRepairFiag to repairServer 

Start a NAK retransmission timer for data packet seq with a 
duration of retransTO 

 

This use case is modeled in Real-Time Maude by the following rewrite rule, which specifies how 
an object of class RSreceiver behaves under the circumstances informally described by the use 
case. The variable declarations preceding the rewrite rule state the type assumed for variables 
used in the rule. 
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vars Q Q′ : Oid . vars NZN NZN′ : NzNat . var X : Bool . 
var MC : MsgConf .  vars DI DI′ : DataInfo . var N : Nat . 
var DT : DefTime .  var CF : Configuration . var R : Time . 
op ERROR : –> Configuration 
 
rl [B5] : 

{< Q : RSreceiver | readNextSeq  : NZN, fastRepairFlag : X, 
dataBuffer : MC, repairserver Q′ , retransTO : R, 
dataInfo : (info (NZN′ , 0, DT, N) DI) > CF } 

=> 
{if (NZN′ seqNoIn MC) or (NZN′ < NZN) then 
(< Q : RSreceiver | dataInfo : (info(NZN′, noTimeValue, DT, N) DI) > CF) 
else (if 48 < N then  ERROR 

else  (< Q : RSreceiver | dataInfo : 
(info(NZN′ , noTimeValue, R, N) DI) > 

send(NAKPacket (NZN′ , N, X), Q, Q′) CF) fi) fi} . 
 

The functions mte and delta define the timed behavior of objects of class RSreceiverAlone. 
The only time-dependent values are the two timers in the information state for each missing data 
packet. The function mte ensures that the “tick rule” in [37] stops the time advance when a timer 
expires, and the function delta updates the timers according to the time elapsed. 

3.4 Formal Analysis of the AER/NCA Protocol Suite in Real-Time Maude 
The AER/NCA protocol has been subjected to rapid prototyping and formal analysis, as 
illustrated here and described in full detail in [37]. 

3.4.1 Rapid Prototyping. 
To execute the repair service protocol we added a sender application object and a number of 
receiver application objects, and defined an initial state RSstate. The sender was supposed to use 
the protocol to multicast 21 data packets to the receiver applications. Rewriting this initial state 
should have led to a state where all receiver applications had received all packets. Instead, the 
execution uncovered an ERROR state. By executing fewer rewrites we could follow the 
execution leading to the ERROR state, and could easily find the errors in the formal and 
informal specifications. Executing the repair service protocol with a different initial state 
revealed another undesirable behavior where a lost packet was never repaired, and we could 
again easily trace the error. 

The other protocol components have been prototyped by executing appropriate initial states and 
exhibit the expected behavior. The composite protocol was executed with the initial state having 
the same topology as the one for which execution of the stand-alone RS protocol failed. 
However, the composite protocol managed to deliver all data packets to each receiver. This was 
due to the presence of the rate control component, which adjusted the sending rate to avoid the 
packet losses that led to the faulty behavior in the execution of the RS protocol component. 

3.4.2 Formal Analysis 
The specifications were subjected to further formal analysis by using the search and model check 
ing commands and the meta-programming features of Real-Time Maude. For example, the RTT 
protocol should find in the sourceRTT attribute the round trip times from each node to the 
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sender. Likewise, each receiver or repair server should have a maxUpRTT value equal to the 
maximal round trip time from any of its “siblings” to its immediate upstream node. The main 
property that the stand-alone RTT protocol should satisfy is that, as long as at most one packet 
travels in the same direction in the same link at the same time, the following properties hold: 

• Each rewrite path will reach a state with the desired sourceRTT and maxUpRTT values 
within given time and depth limits (reachability). 

• Once these desired values have been found, they will not change within the given time 
limit (stability). 

We defined an initial test configuration RTTstate with nodes ′a, ′b, ..., ′g, and where, in 
otherwise empty links, the round trip times to the source from the nodes ′c, ′d, and ′e are, 
respectively, 58, 106, and 94, and the maxUpRTT values of these nodes are, respectively, 58, 48, 
and 48. States in which the nodes ′c, ′d, and ′e have the above sourceRTT and maxUpRTT 
values are matched by the pattern 

 
{ <  ′c :  RTTrepairserverAlone  |   sourceRTT  :  58,  maxUpRTT  :  58,  ATTS1 > 

< ‘d :  RTTrepairserverAlone  |   sourceRTT  :  106,  maxUpRTT  :  48, ATTS2 > 
 < ‘e :  RTTreceiverAlone   |   sourceRTT  :   94,  maxUpRTT  :  48,  ATTS3  >   CF}. 
 

where ATTS1, ATTS2, ATTS3, and CF are variables used to match the remaining attributes and 
objects. 

The desired property that the RTT protocol should satisfy can therefore be given by the 
following temporal formula, where P abbreviates the above pattern 

anyPattern UStable≤timeLimit P. 

To check this property we used Real-Time Maude’s strategy library to define a model checking 
function 

ustable(mod, 0t ,  n, timeLimit , pattern) 

which gives the set of terms representing rewrite paths using the module mod, starting from the 
initial term 0t which invalidate the reachability-and-stability property 

anyPattern UStable≤timeLimit pattern, 

and which have maximal bound n on the number of rewrites in the path (with 0 meaning 
unbounded). The search returns emptyTermSet if the property holds for all paths satisfying the 
given length bound. 

We used the ustable function to check whether the above desired property holds in all rewrite 
paths having total time elapse less than or equal to 400, starting from state RTTstate. All paths 
found satisfied the desired property, thus increasing our confidence in the correctness of the 
proto col. 
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The search function us table has also been used to show the undesired property that there is a 
behavior—after some receiver has been nominated and is aware of it—in which no receiver has 
its isNominee flag set to true. This property can be shown by finding a counterexample to the 
opposite claim, namely, anyPattern UStable ∞≤  pattern P′, where P′ is the pattern 

< Q : NOMreceiverAlone | isNominee  :  true, ATTS1 > CF 

matched by receivers whose nominee flag is set to true. The property anyPattern UStable ∞≤  
pattern P′ does not hold. Checking this property using ustable resulted in a useful 
counterexample. 

3.5 Experience Gained from the AER/NCA Analysis 
The AER/NCA protocol suite stressed the Real-Time Maude tool and Maude formal 
methodology with a challenging distributed real-time application. Real-Time Maude proved to 
be a good match for this challenge. All of the errors previously found (but not initially disclosed 
to the Maude team) by testing and AER/NCA implementation using NS, and active networks test 
beds, were found with modest effort using the Real-Time Maude environment. In addition, 
previously unknown errors were found as a result of the Maude effort. Two key issues for 
adequate formalization and analysis are the appropriateness and usefulness of the resulting 
specification, and the adequacy of the tool support. In particular, the formalization needs to be at 
the right level of abstraction to represent the essential features—including in this case resource 
contention and real-time behavior—without being overwhelmed by the complex nature of the 
system being modeled. In this regard, the modularity and composability of the specifications for 
each component made it easy to understand and analyze individual components and aggregate 
system behaviors. Furthermore, the flexibility and extensibility of the Real-Time Maude strategy 
library made it easy to carry out complex analyses tailored to the specific application that would 
have been infeasible using general-purpose algorithms. 

The adequacy of the Real-Time Maude specification for applications of this nature can be 
contrasted with that of use cases, such as those in the informal specification provided by the 
TASC Team which was the starting point of our formal specification effort. Although use cases 
are widely used as a software design technique, the experience gained from the present work 
indicates that they are not well suited for modeling complex distributed systems. To understand 
the system behavior, state transition diagrams had to be developed by the protocol designers. The 
Maude specification provided a natural formalization of the informal state transition diagrams 
and followed closely the designers’ intuitions. In hindsight, it seems clear that, for distributed 
applications of this kind, the executable state-transition style of the Maude specification is a 
much more effective starting point for an implementation than use cases. 

4 The Semantics of PLAN in Maude 
One of the areas of active networks research is the development of programming paradigms that 
provide a suitable level of abstraction for active networks applications. A particular 
programming language providing such a new paradigm is PLAN, the Packet Language for 
Active Networks [19, 18, 36, 20, 26], which has been implemented as part of PLANet, an active 
internetwork architecture [21].  PLAN is a resource-bounded functional programming language 
that uses a form of remote procedure call to realize active network packet programming. PLAN 
programs are sets of active packets that travel through a network, executing code on specified 
nodes. Remote function execution means that functions can be applied to arguments so that the 
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execution does not take place locally but in the execution environment of a different network 
node. To this end, the function call is treated as a so-called chunk, that is, as a piece of data, 
which is transmitted to the destination node by means of a packet. Resource awareness refers to a 
mechanism that keeps track of computational resources to ensure that all PLAN programs are 
terminating. In addition, PLAN programs interact with their host nodes through Service Package 
interfaces. Basic services include provision of information about local network topology, local 
node properties, time, and routing. Additional possible services include resident data services for 
(time-limited) data storage and retrieval. Details can be found in the PLAN programmer’s guide 
[22]. 

The active nature of PLAN programs makes it important to have a formal specification of the 
semantics. Here we describe the case study in which we developed a formal semantics of the 
PLAN active network language in Maude. (A Web site, for which the Maude Web page will 
have a link, is under construction from which the case study will be accessible, including the 
Maude modules, documentation, and examples using the specification—watch the Maude Web 
page for a link.) Such a formal specification should be usable by a diverse community of users. 
In addition we wanted a specification that supported addressing concerns arising from different 
views of PLAN, and one that faithfully captured the key concepts emerging from the existing 
informal and semiformal semantics. 

Concerning the potential users of the Maude specification, we aimed for a specification that 
could be used by: 

• Implementors—as a reference standard with a flexible notion of conformance 

• Programmers—providing 

— a clear and intuitive semantics for PLAN constructs 

— a tool for prototyping and simulation 

— a basis for analyzing and proving properties of PLAN programs 

• Language designers—providing 

— a simple formal basis for reasoning about properties of the language 

— a tool for experimenting with new designs 

— a framework for specifying safety properties of the service packages 

— a basis for expressing compiler/platform independent guarantees for network 
protection 

For all these uses it is important to express the underlying network model and the program 
execution model at the right level of abstraction. Two dimensions of desired flexibility for PLAN 
implementations are (1) the degree of concurrency and (2) anytime type-checking. Network-level 
concurrency is unavoidable; each node executes its tasks independently. Node-level concurrency 
is under the control of the implementation—several packets may execute concurrently on a node, 
or execution may be completely sequentialized. Anytime type-checking means that runtime type 
errors must be avoided, but at each node the implementor can decide how they are to be 
prevented: by purely dynamic checking (stopping execution just before a runtime error), purely 
static checking (not allowing a program to execute if it cannot be proved to be well typed), or 
some intermediate strategy. 



 

 

 

14

The multiple views of PLAN and associated concerns include: 

• A language for programming mobile agents with concerns of security 

• A language for programming networks with concerns of safety and resource usage 

• A scripting language for combining services provided by network nodes, that is 
parametric in the choice of node services and uses rely/guarantee-style reasoning 

Our sources for the informal semantics of PLAN included (in addition to conversations with 
members of the Switchware team) the PLAN specification document [24] and paper [26] (a 
fairly detailed description of an operational semantics) and the PLAN programmers guide [22] 

We have specified a more general language that we call the PLAN Frame Language. 
Generalizing leads to a simpler, more elegant model. PLAN maps naturally to a subset defined 
by simple syntactic restrictions. Our specification fully captures the intent of the specifications 
[24] and [25], but has the benefit of being both rigorously formal and executable. Furthermore, 
as we will illustrate, this specification can be used at very different levels [8] ranging from 
execution of test configurations and model checking analysis to verification of higher-level 
properties. 

4.1 Overview of PLAN in Maude 
In our Maude specification of PLAN the structure of configurations of a network executing 
PLAN packets is modeled as a “soup” (multiset) of nodes and packets in transit. Each node is 
itself represented as a soup consisting of a core node, datasets belonging to the node, and 
processes belonging to the node. This representation of the high-level structure allows 
concurrency to be represented quite naturally using multiset rewriting. 

A core node has the form Node (1, devs, nbrs, rt) where 1 is the node identifier, 
devs is a list of addresses of devices interfacing the node to the network, nbrs is a list of 
neighbors (reachable by one hop), and rt is a routing table. The network communication 
channels are not explicitly modeled, and the network topology is implicit in the neighbors lists. 

A process has the form Process(1, src, ariv, ssn, rb, redstate) where l is 
the identifier of the node on which the process is executing, src identifies the  packet’s original 
sending node, ariv is the device on which the packet arrived at the node, ssn is the packet’s 
session identifier, rb is the amount of resource available to the packet, and redstate is the 
state of the abstract machine executing the packet program. To specify this abstract machine we 
use an approach developed for functional languages with side effects [14, 23, 31]. The main idea 
is that the local reduction state, redstate, of a process is a pair (cx, ex) consisting of a 
reduction context, cx, (an expression with a hole) and the expression, ex, to be reduced in this 
context. Further more, the specification uses the CINNI calculus [43] to specify binding relations 
in the language. This approach has the advantage that parameter binding can be represented by 
substitution, with a simple mechanism for avoiding the problems of name capture and renaming. 

A packet has the form Packet(nhop, dest, src, ssn, rb, rf, val, vall) 
where nhop addresses the next node to be visited en route to the final destination, dest. src 
identifies the packet’s original sending node, ssn is the packet’s session identifier, rb is the 
amount of resource available to the packet, rf is the routing function to use for forwarding, and 
the pair (val ,vall) is a chunk consisting of a function val to apply and a list of arguments 
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vall. A PLAN program is executed by injecting a packet into the network at the source node. 
The packet is given a fresh session identifier and its chunk contains the program entry point and 
data. 

The rules specifying how PLAN packets execute in the network are organized in three groups:  
functional reduction rules that involve only the process state, rules for sending and receiving 
packets, and service rules. To give a flavor of the specification we present a few representative 
rules. 

Let rules. The functional rules are further divided into control and reduction rules. Control rules 
describe the factoring of an expression into a reduction context and a redex, thus expressing the 
flow of control in a program. Reduction rules give the meaning of individual language 
constructs. We illustrate this for the case of let expressions. A let expression has the form     Let 
[idl = exl] ex, where idl is an identifier list, exl is a list of expressions whose values 
are to be bound to the identifiers, and ex is the body—to be evaluated using the bindings. The 
control rule for let specifies that the elements of the expression list are evaluated in left-to-right 
order. 
rl [let-control] 

RedState(cx, Let [idl = (vall, nval, exi)] ex) 
 => 

RedState(< ? := Let [idl = (vall, ?, exl)] ex > cx, nval) . 
 

Here vall is a value list and nval is a nonvalue expression. The let reduction rule is 
rl [let-reduce} 

RedState(cx, Let [idl = vall] ex) . 
=> 
RedState(cx, [idl := vall] ex) . 

 

where [idl : = vall]  ex is the result of substituting values in vall for corresponding 
identifiers (variables) in idl in ex. Note that let is the functional analog of declaration and 
initialization of variables in a language like C or Java. Because updating is not allowed we can 
calculate symbolically by substitution. 

Packet rules. The PLAN resource model bounds the number of packets that can be sent in the 
process of executing a PLAN program, with packet forwarding counted as a send. The 
expression OnNeighbor (val vall, Addr dest, Int int) sends a packet to 
neighbor dest. The packet’s chunk is (val ,vall), and its resource bound is int, which 
must be subtracted from the sender’s available resources. This is specified by the following 
(conditional) rule: 
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cr1 [packet-send] 
Process(l,  src,  ariv,  rb,  rf. 

RedState(cx, OnNeighbor (| val  | vall,  Addr dest, Tnt int))) 
=> 
Process(1,  src, ariv, (rb  -  int),  rf,  RedState(cx,  Dummy)) 
Packet(dest,  dest,  src, (int - 1),  no-rf, val, vall) 
if (rb >= int) and (int > 0) 

 
A packet has arrived at its destination if its next hop and destination addresses are the same, and 
it arrives at the node whose device address list contains this address. In this case a process 
belonging to the addressed node is created. The arrival address of the process is the packet’s 
destination address, and the source, session identifier, and resource bound of the process are 
given by the corresponding packet parameters. The initial reduction state has empty context, “?“, 
and expression formed by application of the chunk function to its value list. 
cr1 [packet-receive] 

Node (1 , devs, nbrs, rt) 
Packet(dest, dest, src, ssn, rb, rf, val, vail) 
=> 
Node (1 , devs, nbrs, rt) 
Process(l, src, dest, ssn, rb, RedState(?, (val vail))) 
if contains(devs,dest) 

 
Service rules. Service operations allow a packet to access and in some cases modify the state of 
the node on which it is executing. ThisHost is a nullary operation that returns a list of the node’s 
device addresses. 
rl Node(1,devs,nbrs,rt) 

Process(l, src, ariv, ssn, rb, RedState(cx,  ThisHost ( ))) 
=> 
Node (1, devs, nbrs, rt) 
Process(1, src, ariv, ssn, rb, RedState(cx, cast(devs))) 

 
cast (devs) converts the node’s representation to PLAN data. The resident data service 
operation Put (String str, Key key, val, mt ttl))) stores val,labeled by str,key, in the data set 
belonging to the node with time-to-live t t 1. 
rl Data(1,dil) 

Process(1, src, ariv, ssn, rb, 
  RedState(cx, Put (String str, Key key, val, Int ttl))) 
=> 
Data(l,put(dil,str,key,val,ttl)) 
Process(l, src, ariv, ssn, rb, RedState(cx, Dummy)) 
 
 

4.2 Testing the Maude Specification of PLAN 
A formal specification is like a mathematical theory: spelling out the details in a formal notation 
does force one to clarify concepts and to make many implicit assumptions explicit, but there is 
no guarantee that the specification is correct (represents the intended model) or usable. The 
specification must be subjected to further examination and tests. Like system requirements, 
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whether or not a formal specification is correct is subjective and cannot be mechanically 
checked. However, like a mathematical theory, one can derive consequences (predictions) and 
compare these to observed or desired properties. 

In addition to checking the execution semantics of the Maude specification of PLAN against the 
paper specification [24] we proved a number of general properties of PLAN programs implied by 
the Maude specification: 

(t) PLAN programs terminate—if a packet is injected into the network with a fresh 
session identifier, then eventually all packets with that session identifier are 
delivered, and all pro cesses with that session identifier terminate execution with a 
reduction state having one of the following forms: 

(ti) an empty context and value 

(t2) an empty context and a redex Print val returning val to the source node 

(t3) a redex that, if executed, would send a packet with more resource than is available 

(t4) a redex that, if executed, would be a runtime error 

(ni) Packets injected into a network with no pre-existing (accessible) data elements 
execute independently—that is, execution of packets with different session 
identifiers can be considered separately, since the only mechanism for interaction is 
shared access to data elements. 

(r) For a PLAN program to visit each node of a network by repeatedly sending packets 
to all neighbors (one to each) it is sufficient to start with rb > 2wd, where d is the 
diameter—the length of the longest path between nodes, and w is the width—the 
maximum number of neighbors of any node. To have k units left at every terminal 
point, it is sufficient to start with rb> (k + 2)wd. 

In the case of PLAN, these tests not only help to validate the model, but also improve the 
usability from the language designer’s point of view. For example, the independence result can 
be analyzed to arrive at criteria for additional Service Packages to assure desired noninterference 
among packets belonging to different sessions or other groups. 

A polymorphic type system and typing rules have been defined for our generalized PLAN along 
with a first prototype of a type inferencer. For PLAN programs that are typeable, the termination 
case (t4) does not arise. The typing rules combined with strategies for use of the rules to detect 
type errors are the basis for formalizing the notion of anytime type-checking. 

4.3 Testing and Analyzing Particular PLAN Programs 
To test the usability of the specification from the programmer’s point of view, we selected 
several PLAN programs and subjected them to a spectrum of formal analyses. The general 
approach for these exercises was to 

(1) represent the program as a Maude term (a simple syntactic modification, which could be 
automated) 

(2) define a suite of test configurations, each determined by a network configuration and 
program input—also represented as Maude terms 

(3) run the test configurations using the Maude interpreter 
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(4) further analyze the possible computations of the test configurations using Maude’s 
search and model checking tools 

(5) prove properties of interest for arbitrary network configurations and inputs (using 
ordinary rigorous mathematical reasoning based on the formal model) 

Execution and analysis can be done by executing and reasoning about the PLAN interpreter, 
taking the test configurations as input. However, this means considering a lot of detail that we 
would rather not see. To solve this problem, we developed a specialization transformation that, 
given a PLAN program, produces a Maude module defining abstract program states and rules, so 
that executions of the abstract program are the same as those of the original program if one only 
observes packet and service rules. The idea for the transformation was based on similar 
techniques that have been used for rewriting semantics of actor languages [29, 42] combined 
with general methods for specialization of functional programs. The resulting program modules 
look very much like the handcoded rules previously developed for analyzing PLAN programs 
using Maude [15] and seem well suited for use of the specification as a testing and simulation 
environment. Preliminary experiments indicate that computations in the specialized modules run 
about 20 times faster than those using the PLAN interpreter, which is reasonable for elimination 
of interpreted overhead. 

As a concrete illustration, we will use one of the route finding programs published in [26]. When 
a find packet is injected at some node in the network and given a destination address, the 
computation is initialized by determining the address of the starting node, and generating a new 
key for labeling data. The program has two main functions—find, for the forward search for the 
node with the destination address, and goback, that returns to the source, assembling a route on 
the way, by following marks left by the forward search. The assembled route list is returned to 
the source node. For most of our tests we used the specialized version of the find program, which 
greatly simplified the execution and analysis. A sample network configuration, example-net 
for testing this program is shown in Figure 2. Executing the program starting at node 0 with 
destination e4 returns the route (al, c3, e4) indicated in the figure by the dashed line. 

All the example runs produced a single path from source to destination. We conjectured that in 
general at most one path would be discovered. However, an attempt to prove this failed when we 
discovered that certain (unlikely) interleavings of execution of marking operations resulted in the 
possibility of more than one path being discovered. We used the newly developed Maude model 
checking capability to find an actual example run where this happened. The actual Maude 
command was 

red init-al 1= [ ~ PrintTwice. 

Here the configuration to be checked is init-al, PrintTwice is a property satisfied by a 
configuration in which there are two processes printing answers on the packet source node, and 

[ ] ~PrintTwice 

is a temporal logic formula that is satisfied only if no reachable configuration satisfies 
PrintTwice. The model-checker returned a counterexample showing a possible computation in 
which two distinct paths from source to destination were returned to the source. 

Finally, we proved some correctness properties of the find program: 
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(f 1) If the find program started at node “1” with destination “d” prints “p” at the source, then 
“p” is a path from “1” to “d”. 

 

 
 

Figure 2  A Plan Network 
 

(f2) If the find program started at node “1” with destination “d” is given sufficient resources 
and there is a route from “1” to “d”, then eventually there will be at least one process that 
prints a path at the source node “1”. 

The proof is simplified by making use of the general properties of PLAN programs stated above. 
Note that the resources needed in (f2) can be computed using the general result (r). 

4.4 PLAN in Maude Conclusions 
We emphasize that testing a specification as we did is an extremely important part of the process 
of developing a formal model. In fact the specification presented here is the second major 
version; the first version we developed, which served to clarify many issues and fill in many 
gaps, was too complex to be useful. 

Our task was made much easier thanks to the existence of the paper specification and other 
documentation. Formalization required filling in some gaps and we made some alternate choices 
in modeling the network to achieve greater modularity and concurrency. 

Regarding making the specification usable by a diverse community, the current version is a good 
start; what is needed now is to develop tools that help others use it. This includes techniques and 
tools for checking implementation conformance, support for graphical animation of packets 
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executing in a network, automating the specialization process, and developing even stronger 
abstractions to support application of model checking and verification tools. 

Future developments of the specification include modeling dynamic network topology, real-time 
aspects, and security properties. 

5 Conclusions and Future Developments 
Modeling and formally analyzing active network systems and protocols is quite challenging, due 
to their highly dynamic nature and the need for new network models that renders approaches 
based on standard models inadequate. We have proposed a highly flexible semantic framework 
for executable formal specification of active network systems and languages, namely rewriting 
logic. We have also shown how, in conjunction with its Maude implementation and the Maude 
formal tools, active network systems, languages, and protocols can indeed be formally specified 
and analyzed using a flexible range of formal methods. In this way one can gain (1) a precise 
documentation of their design, (2) the early discovery of many bugs, and (3) higher assurance 
about their correctness. We have illustrated these methods and their practical usefulness through 
two active networks case studies: the AER/NCA protocol suite and the PLAN executable 
semantics. 

Our goal has been to insert formal methods from the early stages of next-generation network 
system design. Our experience in all the active networks case studies that we have conducted has 
been very positive, indicating that this can indeed be done with relatively low cost and with 
substantial benefits. Cost should be measured not only in terms of amount of effort required by 
the methods, but also in terms of the difficulties for network engineers in using a formal notation. 
On both counts our experience validates a low cost. The rewrite rule formalism is very close to 
the transition diagram notation that network engineers use routinely—in fact, much closer than 
informal specifications like use cases. Also, the fact that great benefits can be drawn even from 
“lightweight” methods, such as symbolic simulation of the design using the Maude specification, 
greatly lowers the usual barriers to the adoption of these methods within the design process. 

Our experience has been very positive, but more research is needed to make these ideas, 
methods, and tools accessible to network engineers. We consider the following future research 
directions to be key to further advancing this goal: 

• Integration with network simulation and validation tools. Our methods and tools should 
be integrated with other tools supporting network design, including simulators; in this 
way, interoperation between different design notations and their supporting tools will 
allow sophisticated analyses of designs at different levels of abstraction in a way not 
currently possible. 

• Extensions of our methods to real-time verification. Our methods can be applied not only 
to designs, but also to the systems built from those designs. In this way, specification-
based testing and monitoring of the implemented systems also becomes possible. The 
positive experience about this kind of real-time verification using Maude in [17] suggests 
that this as a promising and very practical direction. 

• Development of domain-specific tools. Our experience with PLAN, which at present 
lacks a simulator, suggests that, based on the Maude executable specification of a 
language of a system, very useful special-purpose tools for that system—such as 
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simulators, debuggers, verifiers, and animation tools—can be developed with relatively 
low effort. 

• Advancing the Maude formal methods and tool infrastructure. To scale up to large 
applications, high-performance tools and compositional methods become essential. 
Present and future advances on Maude and its supporting tools are a key infrastructure 
that needs to be further advanced. For example, the high performance of the Maude 
interpreter can be in creased by a compiler, and the recent C++ implementation of the 
Maude LTL model checker will allow dealing with much bigger examples than possible 
with previous prototype tools. Hand in hand with more efficient tools, compositional 
proof methods also need to be developed. 

• Code generation and Maude-based network languages. The gap between specifications 
and implementations can be drastically reduced by semantics-preserving methods that 
generate code from executable Maude specifications. This could be done for a variety of 
languages, including conventional languages such as Java (see the promising approach 
presented in [28] and for distributed and mobile languages directly based on Maude such 
as Mobile Maude [13]. 
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